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Table 1. Amyloid fibril proteins and their precursors in human?.
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Target organs m

Systemic or Acquired or
Fibril protein Precursor protein localised hereditary
AL Immunoglobulin light chain S, L A, H All organs, usually except CNS
AH Immunoglobulin heavy chain S, L A All organs except CNS
AA (Apo) Serum amyloid A S A, H All organs except CNS
ATTR Transthyretin, wild type S* A Heart mainly in males, lung, ligaments, tenosynovium
Transthyretin, variants S H PNS, ANS, heart, eye, kidneys, leptomeninges
AB2M B2-microglobulin, wild type S A Musculoskeletal system
B2-microglobulin, variants S H ANS, tongue, heart
AApoAI Apolipoprotein A |, variants S H Heart, liver, kidney, PNS, testis, larynx (C terminal
variants), skin (C terminal variants)
AApoAll Apolipoprotein A Il, variants S H Kidney
AApoAlV Apolipoprotein A IV, wild type S A Kidney medulla, heart, gastrointestinal
AApoAlV Apolipoprotein A IV, variant S H Heart, kidney
AApoCl| Apolipoprotein C Il, variants S H Kidney
AApodlIl Apolipoprotein C llI, variants S H Kidney
AGel Gelsolin, variants S H Kidney
PNS, cornea
Alys Lysozyme, variants S H Kidney
ALECT2 Leukocyte chemotactic factor-2 S A Kidney, primarily
AFib Fibrinogen q, variants S H Kidney, primarily
ACys Cystatin C, variants S H PNS, skin
ABri ABriPP variants S H CNS

Buxbaum et al, Amyloid 2024




AL amyloidosis
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1. Merlini & Stone, Blood 2006; 2. Blancas-Mejia et al, Biophys Chem. 2015; 3. Oberti et al, Sci Rep. 2017; 4. Maritan et al JMB 2020
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Genotype—phenotype correlations in ATTR amyloidosis

Castano et al, Heart Fail Rev 2015



A Shared Amyloid Architecture in Cardiac Fibrils from Three
Neuropathy-Associated AT TR Variants

ATTRv-P24s [P Fssc  ATTRy-D38A

Fernandez-Ramirez et al bioRxiv 2025



ATTRv-V30M amyloid fibrils from heart and nerves exhibit
structural homogeneity

Transthyretin V30M amyloidosis
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Nerve vs Heart fibril structures Nguyen et al, Structure 2024




In AL amyloidosis a common fibril structure is
present across organs in the same patient
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3D maps at 4 A resolution Superimposed structures

Extracted fibrils from the kidney of an AL patient whose cardiac fibril structure had been solved previously,
and showed the renal fibril is virtually identical to the cardiac fibril—supporting a common fold across

organs within the same patient. _ _
Puri et al, J Mol Biol 2023



Interactions of the amyloid protein with the extracellular matrix

« Glycosoaminoglycans
« Collagens

« Endoproteases (shear forces)



Distribution and structures (repeating disaccharide units) of GAGs in the
extracellular matrix
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Polyanionic heparin works as scaffold in enhancing aggregation by aligning the ’*"
peptide molecules in the correct orientation and with the appropriate periodicity “

Oligomer Fibril extension
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Heparin binding Heparin catalyzed
fibril extension

lannuzzi et al, Molecules 2015

Amyloid seeding is strongly
influenced by which HSPGs are
present, how their HS chains
are sulfated, and whether local
disease signals remodel them.
This creates organ- and
microdomain-specific
“permissive matrices” that
capture seeds, enable cell entry,
and stabilize nascent fibrils

Holmes et al, PNAS 2013

Oskarsson et al, JBC 2015

Rauch et al, Sci Rep 2018




GAGs modulate amyloid formation across proteins

AB (Alzheimer’s amyloid-f3) McLaurin et al., FASEB J 1999

Tau Zhu et al, J Biol Chem 2009

a-Synuclein Tao et al, Nat Commun 2022

Prions Warner et al, J Biol Chem 2002 A .
- /\/\ »

Serum Amyloid A Kisilevsky, J Clin Invest 1988 0 o

Transthyretin Noborn et al, PNAS 2011 Eprodisate

B2-Microglobulin So et al, Protein Sci 2017

Immunoglobulin light chains Blancas-Mejia et al., J Biol Chem 2014



Glycosaminoglycans display notable heterogeneity in their distribution,
composition (e.g., chain length, disaccharide units), sulfation patterns and
attachment to proteoglycans across human organs.

Expression profiles of GAG-related genes in human tissues.

Huang et al, Front. Cell Dev. Biol. 2021



nature communications a

Article https://doi.org/10.1038/s41467-024-50686-2

Helical superstructures between amyloid
and collagen in cardiac fibrils from a patient
with AL amyloidosis
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The role of amyloid protein-cell interaction
In tissue vulnerabllity



Cellular mechanism of fibril formation from serum amyloid A1 protein
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Light chain-amyloidogenesis by mesangial cells involves active
participation of lysosomes
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Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of “E_gff
amyloidogenic light chain-mediated cardiotoxicity .‘\,

A

Lysosomal insufficiency is among
the earliest events that occur in
response to AL-LC. They are
partially proteolized favoring their
aggregation. LC are released into
the cytoplasm.

Mitochondrial dysfunction was found
to be closely associated with AL-LC-
induced pathology.

Guan et al, EMBO Mol Med 2014



Internalisation of immunoglobulin light chains by cardiomyocytes in
AL amyloidosis

We show, for the first time directly in patient tissue, the presence of LCs inside cardiomyocytes,
and report their proximity to nuclei and to caveolin-3-rich areas. Our observations point to
macropinocytosis as a probable mechanism of LC uptake.

Bezard et al, Amyloid 2024
In cardiac cell cultures: Monis et al, Am J Pathol 2006, Sikkink et al, Cell Death Dis 2010



AL LCs impair mitochondrial function and survival in human cardiac cells

Cardiotropic LCs interact with —
ROS increase driven by metals mitochondrial proteins Apoptotic signals
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Cardiotoxic LC colocalize with mitochondria in human cardiac |
fibroblasts but not in dermal fibroblasts .‘.

Cardiac fibroblasts Dermal fibroblasts
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No colocalizations between mitochondria, OPA1 or ACOX1 and all tested LCs in dermal fibroblasts

Lavatelliet al FASEB J 2015



Low fold stability and high protein dynamics correlate with amyloidogenic LCs

e iy of H and M LCs Crystal structure of 8 amyloidogenic
Y - cardiotoxic LCs (H), and 5 non amyloid LCs (M)

0=+ T

40 50 60 70 80 Kinetics of LC proteolysis by trypsin
Temperature

* low fold stability

* high protein dynamics

correlate with amyloidogenic LCs,

while hydrophobicity and structural rearrangements
are not relevant

Oberti et al, Sci Rep 2017



Light chain instability is linked to cardiotoxicity

We rationally engineered the amino acid sequence of the highly cardiotoxic LC H6 by
introducing three residue mutations (V47L, T70N, and G75T), designed to reduce the dynamics
of its native state.

These findings support the ongoing development
of a new class of drugs: LC stabilizers

The stabilized LC, restored the cardiac cells
viability, ATP production, pumping rate of C.
elegans, and reduced oxidative stress

Maritan et al, JMB 2020 Yan et al, J Med Chem 2021



The proteostatic capacity, the cell's ability to preserve protein homeostasis
by balancing protein synthesis, folding, and clearance, varies in different
tissues/organs and may underlie tissue vulnerability and resilience in
amyloidosis



Shaping proteostasis at the cellular, tissue, and organismal level

Morimoto et al, J Cell Biol 2017



2024

When the intracellular protein aggregates overwhelm the proteostasis capacity,
cytotoxic protein aggregates accumulate and place an excessive burden on the
proteostasis network’s ability to maintain proteome integrity. This initiates a feed-

forward loop, wherein the generation of misfolded and aggregated proteins ultimately
leads to proteostasis collapse and cellular demise.



Proteostasis network impairment by aggregate formation

Proteostasis collapse and cell death

1. Olzscha et al, Cell 2011; 2. Woerner et al, Science 2016; 3. Hipp et al, Trends Cell Biol 2014



QEC) M OLECULAR AGEING

The proteostasis network and its
decline in ageing

Mark 5. Hipp(®, Prasad Kasturi and F. Ulrich Hartl

Nat Rev Mol Cell Biol 2019

Aged / Declining capacity

Basal ER stress; PERK—elF2a/ATF4/CHOP bias; IRE1a/XBP1s & ATF6
programs wane

Chaperone/co-chaperone insufficiency; ERAD, proteasome & autophagy flux fall

Secretory QC slippage — amyloidogenic intermediates escape ER
Extracellular chaperone capacity declines

Net result: increased misfolded/aggregated species, organ vulnerability



Proteostasis capacity and microenvironment interactions play a different role in
various amyloidosis types

Proteostasis capacity

- . Microenvironment interactions
Schilling, Nuvolone, Merlini JACC HF 2024 commentary to Voss et al, JACC HF 2024



Selective vulnerability is a hallmark of neurodegenerative diseases

Kampmann, Nat Rev Neurosci, 2024



Cell-autonomous mechanisms of selective vulnerability
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Microenvironment + proteostasis capacity gate organ
vulnerability and resilience

Further research is required to elucidate the underlying
molecular mechanisms

These factors represent actionable targets for improving
the management of both systemic and localized
amyloidosis

THANK YOU!
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